مسألة 8 صفحة 198:

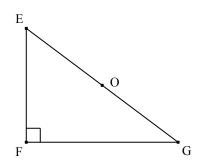
مسألة ناليفية عدد 8

وحدة الطول هي الصم

- [EG] مثلثا قائم الزاوية في F = 4 و F = 3 و F = 6 منتصف (EG) ليكن F = 6 منتصف F = 6 منتصف أ) انجز الرسم.
 - ب) احسب EG ب
 - ج) احسب FO.
- 2) المستقيم المار من E والموازي للمستقيم (FO) يقطع المستقيم (FG) في نقطة X يين أن المثلث EGK متقايس الضلعين.
 - 3) المستقيم (KO) يقطع (EF) في نقطة M
 - أ) احسب EM.
 - ب) المستقيمان (GM) و (EK) يتقاطعان في نقطة A. بين أن A منتصف
 - ج) ما هي طبيعة الرباعي EAFO ؟ علل حوابك .
 - 4) لتكن كم الدائرة التي قطرها [EG].
 - يين أن النقطة F تنتمي إلى الدائرة ζ
 - . D في النقطة (EK) في النقطة (KG) في النقطة (5) المستقيم العمودي على (5)
 - بيّن أن E منتصف [KD].
- 6) المستقيم (GD) يقطع الدائرة كي في نقطة ثانية P والمستقيم (KD) يقطع الدائرة كي في نقطة ثانية N.
 - أ) بين أنِّ [GN] و [EP] هما ارتفاعان للمثلث GED.
 - . GN بسحا (ب
- ج) لتكن Q نقطة تقاطع المستقيمين(GN) و(EP). بين أن المستقيمين(DQ) و(EG) متعامدان.

(1

_ĺ



F قائم في EFG المثلث

$$EG^2 = FE^2 + FG^2$$
 : حسب نظریة بیتاغور

$$=3^2+4^2$$

$$=9+16=25$$

$$EG = \sqrt{25} = 5$$
 بالتالي

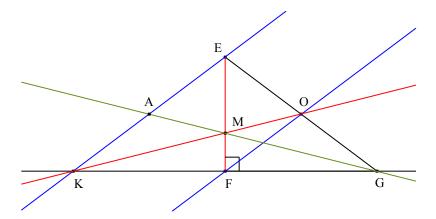
(2

$$ig[EGig]$$
 لنا EFG مثلث قائم في F و G منتصف وتره

$$OF = OE = OG$$
 إذن

$$OG = \frac{EG}{2} = \frac{5}{2} = 2,5$$
 بماأنّ

FO = 2,5 فإنّ



في المثلث EKG لدينا:

$$[EG]$$
 منتصف O -

$$(OF)//(EK)$$
 -

$$F$$
 يقطع $\left(GK \right)$ في -

$$[KG]$$
 إذن F منتصف

$$(K \in (FG))$$
 و بما أن $(EF) \perp (FG)$

$$\llbracket KG
rbrack$$
فإنّ (EF) هو الموسط العمودي لـ

$$E \in (EF)$$
 و بماأنّ

$$EK = EG$$
 فإنّ

E متقايس الضلعين قمته الرئيسية EGK بالتالى المثلث

(3

أ_

$$K$$
 الصادر من EGK الصادر من EG النا EGK الصادر من EG

$$E$$
 الصادر من EGK الصادر من المثلث EGK الصادر من المثلث F الصادر من المثلث المثلث F

$$M$$
 و (EF) يتقاطعان في (KO)

$$EGK$$
 إذن M هو مركز ثقل المثلث

$$EM = \frac{2}{3}EF$$
 بالنالي $= \frac{2}{3} \times 3 = 2$

EGK مركز ثقل المثلث M با

G الصادر من EGK إذن (GM) هو المستقيم الحامل لموسط المثلث

$$A$$
 يقطع (EK) يقطع (GM)

$$igl[EKigr]$$
 نستنتج أن A منتصف

ج-

$$(OF)//(EK)$$
 \Box -

$$([EK]$$
 و بما أن $A \in (EK)$ منتصف

$$(OF)//(EA)$$
 فإنّ

- في المثلث EGK لدينا :

$$[EK]$$
 منتصف A

$$[KG]$$
 منتصف F

$$AF = \frac{EG}{2}$$
 إذن $(AF)/(EG)$ و

$$O \in (EG)$$
 بما أنّ

من $\boxed{2}$ و $\boxed{2}$ نستنتج أنّ الرباعي EAFO متوازي أضلاع

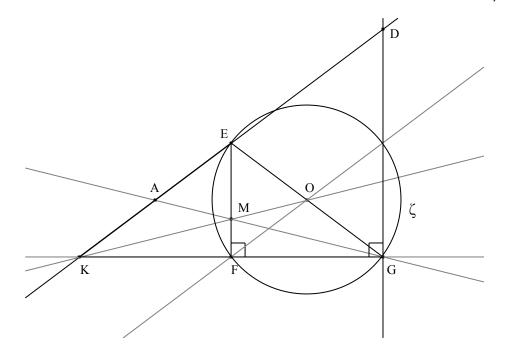
$$([EK]$$
 منتصف $EA = \frac{1}{2}EK$ لنا •

$$(EK = EG) = \frac{1}{2}EG$$

$$(EG]$$
 $=EO$

EAFO متوازي أضلاع و له ضلعان متتاليان متقايسان إذن EAFO معيّن

(4

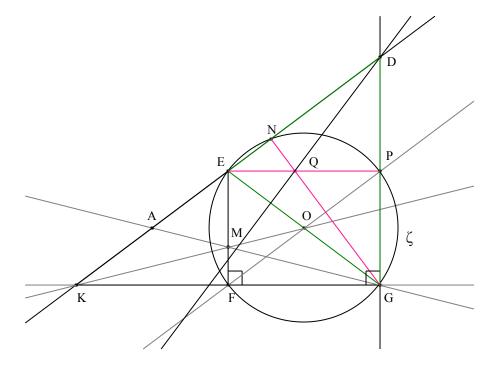


أنشطة حول الرباعيّات

$$[EG]$$
 لنا \mathcal{Z} دائرة قطرها $[EG]$ بما أنّ O منتصف OE فإنّ مركز الدائرة \mathcal{Z} هو O و شعاعها OE و بما أنّ $OF = OE$ فإنّ $F \in \mathcal{Z}$ في المثلث DKG لدينا

$$[KG]$$
 منتصف F - (KG) منتصف (EF)) $(EF)//(DG)$ - E يعامدان (EF)) منتصف (EF) في E إذن E منتصف E الإن

(6



أنشطة حول الرباعيّات

أـ

[EG] لمثلث EPG يقبل الارتسام في دائرة قطر ها

P مثلث قائم في EPG

 $P \in \left(DG\right)$ و بما أنّ $\left(EP\right) \perp \left(PG\right)$

P في (DG) يعامد (EP) في

E بالتالي EP هو ارتفاع المثلث المثلث الصادر من

ig[EGig] المثلث ENG يقبل الارتسام في دائرة قطر ها

N إذن ENG مثلث قائم في

بالتالي $(GN) \perp (EN)$ و بما أنّ K و E و N و على استقامة واحدة

N فإنّ (ED) يعامد (GN) فإن

G بالتالي [GN] هو ارتفاع المثلث المثلث [GN]

 $(GN \times DK = GK \times GD)$ فو ارتفاع المثلث القائم في الصادر من $(GN \times DK = GK \times GD)$ هو ارتفاع المثلث القائم

$$GK = 2FG = 2 \times 4 = 8$$
 إذن F لنا F

$$DK = 2EK$$
 النا E النا E لنا E النا E النا E النا E

$$G$$
 قائم الزاوية في DKG المثلث

$$DK^2 = GD^2 + GK^2$$
 : حسب نظریة بیتاغور $GD^2 = DK^2 - GK^2$ إذن $= 10^2 - 8^2$ $= (10 + 8)(10 - 8)$ $= 36$

$$GD = \sqrt{36} = 6$$
 بالتالي

N في (KD) يعامد (GN) انا

$$G$$
 من الصادر من DKG الصادر من $[GN]$

N قائم في DKG بما أنّ المثلث

$$GN \times DK = GD \times GK$$
 فإنّ

$$GN = rac{GD imes GK}{DK}$$
 بالتالي $= rac{6 imes 8}{10}$ $= 4.8$

ج- لنا

$$G$$
 مو المستقيم الحامل لارتفاع المثلث EDG الصادر من (GN) -

$$E$$
 الصادر من EDG الصادر من (EP) هو المستقيم الحامل لارتفاع المثلث

$$Q$$
 و (EP) يتقاطعان في (GN)

$$EDG$$
 إذن Q هو المركز القائم للمثلث

$$D$$
 بالتالي DG هو المستقيم الحامل لارتفاع المثلث EDG الصادر من

$$(DQ) \bot (EG)$$
 و منه