مسألة ناليفية عدد 7

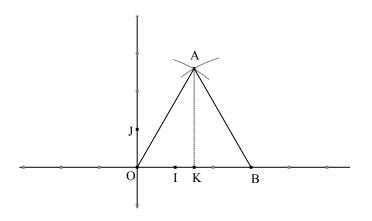
وحدة قيس الطول هي الصم

- OJ) معين في المستوي حيث (OI) عمودي على (OJ)
 - أ) عين النقطة (B(3.0) و K منتصف القطعة [OB].
- ب) ابن النقطة A بحيث يكون المثلثAOB متقايس الأضلاع
 - ج) احسب إحداثيات K و A
 - (OI) لتكن C مناظرة A بالنسبة إلى المستقيم
 - أ) ما هي إحداثيات C ؟ علل جوابك.
 - ب) بين ان الرباعيABCO معيّن.
 - 3) لتكنD مناظرة C بالنسبة إلى O.
 - أ) بين أن الرباعي ABCD شبه منحرف متقايس الضلعين.
 - ب) احسب مساحة ومحيط شبه المنحرف ABCD
 - 4) لتكن E مناظرة D بالنسبة إلى A.
 - أ) احسب إحداثيات E.
 - ب) بين أن المثلث EDC متقايس الأضلاع.
 - ج) استنتج مساحة ومحيط المثلث DEC.
 - 5) المستقيم (BD) يقطع [AK] في نقطة G. أحسب 5

مسألة 7 صفحة 198:

ملاحظات:

- بما أنه وقع الاختيار على
 الصم كوحدة قيس الطول ،
- OI = OJ = 1 : فوجب إضافة في المعطيات
- نقطتان تلبيان شرط أن يكون AOB متقايس الأضلاع
- A و بما أنّ بقية المسألة تعتمد على احداثيات
 - فمن الأجدر أن يكون السؤال 1) ب-
 - ابن النقطة A بحيث يكون المثلث
 - $y_{_A} \geq 0$ متقايس الأضلاع و AOB



1) أ-ب

$$B \in (OI)$$
 اِذن $y_B = 0$ انا •

$$y_{\scriptscriptstyle K}=0$$
 و لنا $K\in \left(OI
ight)$ إذن $K\in \left(OB
ight)$ و لنا

$$x_K = rac{x_O + x_B}{2}$$
 و بما أنّ K منتصف CB فإنّ CB فإنّ CB $= rac{0+3}{2}$ $= 1.5$

K(1,5;0) بالتالي

A منتصف OB إذن ACB هو موسط المثلث ACB الصادر من ACB

بما أنّ AOB مثلث متقايس الأضلاع

A فإنّ AOB هو ارتفاع المثلث AOB الصادر من

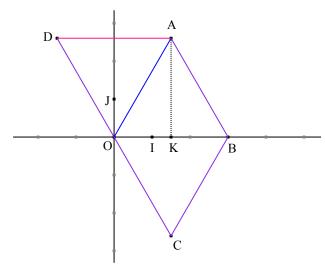
(OI) على المسقط العمودي لـ A على المسقط العمودي لـ K

و بما أنّ (O;I;J) معين متعامد في المستوي فإنّ :

$$|y_A| = AK$$
 - (AOB و المثلث المثقايس الأضلاع $= \frac{\sqrt{3}}{2}OB$ ($y_B = 0$ ثان $B \in (OI)$) $= \frac{\sqrt{3}}{2}|x_B - x_O|$ $= \frac{\sqrt{3}}{2} \times |3 - 0|$ $= \frac{3\sqrt{3}}{2}$ ابن $y_A = -\frac{3\sqrt{3}}{2}$ و المثلث ترتيبة A موجبة في المعطيات $y_A = \frac{3\sqrt{3}}{2}$ و بما أن ترتيبة A موجبة في A موجبة فان A موجبة فان موجبة فان A موجبة فان مو

$$A\!\left(1,5\,;rac{3\sqrt{3}}{2}
ight)$$
 نستنتج أنّ

(2



أ- لنا
$$(O;I;J)$$
 معين متعامد في المستوي

$$(OI)$$
 و C مناظرة A بالنسبة إلى

إذن A و A لهما نفس الفاصلة و ترتيبتان متقابلتان

$$y_C = -y_A = -\frac{3\sqrt{3}}{2}$$
 o $x_C = x_A = 1,5$

$$C\left(1,5;-rac{3\sqrt{3}}{2}
ight)$$
 بالتالي

ب۔ لنا :

$$ig(OIig)$$
 و A متناظرتان بالنسبة إلى A

$$B\in \left(OI
ight)$$
مناظرة B بالنسبة إلى $\left(OI
ight)$ هي B نفسها لأنّ

مناظرة
$$O$$
 بالنسبة إلى $O(OI)$ مي O نفسها

بالتالي
$$AB = CB$$
 و $AO = CO$

و بما أنّ
$$AB = AO$$
 مثلث متقايس الأضلاع) و بما أنّ

$$AB = CB = CO = AO$$
 فإنّ

نستنتج أنّ الرباعي ABCO معيّن

(3

أ۔

$$(AB)//(CO)$$
 معيّن إذن $ABCO$ اننا

(
$$O$$
 بالنسبة إلى D) $D \in (CO)$ بما أنّ

$$(AB)//(CD)$$
 فإنّ

بالتالي فإنّ الرباعي ABCD شبه منحرف

$$O$$
 لنا D مناظرة C بالنسبة إلى

إذن فاصلتا D و C متقابلتان و ترتيبتاهما متقابلتان

$$y_D=-y_C=rac{3\sqrt{3}}{2}$$
 و $x_D=-x_C=-1,5$ بالتالي $y_D=y_A$ بالتالي (AD) $//(OI$

$$AD = |x_D - x_A|$$
 بالتالي
$$= |-1, 5 + 1, 5|$$
$$= |3|$$
$$= 3$$

و
$$ABCO$$
) $BC=AB$ معيّن) $BC=AB$ معيّن) $BC=AB$ و AOB) $AB=OB$ و $BC=AB=OB=3$ إذن $AD=BC$

بالتالي فإنّ الرباعي ABCD شبه منحرف متقايس الضلعين

$$ABCD$$
 فيس محيط شبه المنحرف : P_{ABCD}

$$P_{ABCD} = AB + BC + CD + AD$$
 بالنالي = 3 + 3 + 6 + 3 = 15

ABCD فيس مساحة شبه المنحرف : S_{ABCD}

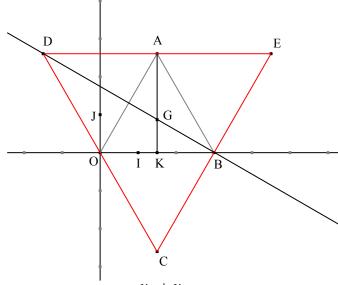
$$(OD = OC = 3)$$
 $AD = OD = AD = 3$

$$\frac{\sqrt{3}}{2}$$
 \times $AD = \frac{3\sqrt{3}}{2}$ يساوي A يساوي و قيس الأضلاع و قيس الأسلام و قي

ABCD و بما أنّ ارتفاع ADO الصادر من A هو ارتفاع لشبه المنحرف

$$S_{ADOB} = \frac{3\sqrt{3}}{2} \times \frac{(AB + DC)}{2} = \frac{3\sqrt{3}}{2} \times \frac{(3+6)}{2} = \frac{27\sqrt{3}}{4} cm^2$$
 فإنّ

(4



$$y_A = \frac{y_E + y_D}{2}$$

$$y_E + y_D = 2y_A$$

$$y_E = 2y_A - y_D$$

$$= 2 \times \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2}$$

$$= \frac{3\sqrt{3}}{2}$$

$$A$$
 مناظرة D بالنسبة إلى E أـ إذن A منتصف E

$$x_A = \frac{x_E + x_D}{2}$$
 بالتالي

$$x_E + x_D = 2x_A$$

$$x_E = 2 \times 1, 5 - (-1, 5)$$

= 3 + 1, 5
= 4, 5

$$(y_E = y_A = \frac{3\sqrt{3}}{2} \text{ if } (AD)//(OI) \text{ or } E \in (AD) \text{ of } (AD)$$

$$E\left(4,5;\frac{3\sqrt{3}}{2}\right)$$
 بالتالي

-**-**

طريقة 1 :

 $DE = 2AD = 2 \times 3 = 6$ اذن A لنا A

$$DC = 6$$
 و بما أنّ

 $\hat{ODA} = 60^{\circ}$ المثلث ADO متقایس الأضلاع إذن

$$C\in igl[DOigr)$$
 و بما أنّ $E\in igl[DAigr)$ و

$$\hat{Z}$$
 $\hat{EDC} = 60^{\circ}$ فإنّ

من $\boxed{2}$ و $\boxed{2}$ نستنتج أنّ المثلث EDC متقايس الأضلاع

في المثلث EDC لدينا

$$[DE]$$
 منتصف A -

$$[DC]$$
 منتصف O -

$$EC = 2 \times AO = 2 \times 3 = 6$$
 و منه $AO = \frac{EC}{2}$ و $(AO)/(EC)$ إذن

بالتالي DE = DC = EC = 6 إذن المثلث DE = DC = EC = 6

ج-

EDC قيس محيط المثلث : P_{EDC} حساب

بما أنّ المثلث EDC متقايس الأضلاع

$$P_{EDC} = 3 \times DC$$
 فإنّ
= $3 \times 6 = 18$

EDC قيس مساحة المثلث • S_{EDC}

C نا EDC الصادر من EDC هو موسط المثلث EDC الصادر من A

بما أنّ EDC مثلث متقايس الأضلاع

$$AC = \frac{\sqrt{3}}{2} \times DC = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3}$$
 فإنّ $[CA]$ هو ارتفاع المثلث EDC الصادر من C و لنا

$$S_{EDC}=rac{DE imes AC}{2}$$
 بالتالي $=rac{6 imes 3\sqrt{3}}{2}=9\sqrt{3}~cm^2$

(5

$$\frac{y_E + y_C}{2} = \frac{\frac{3\sqrt{3}}{2} + \left(\frac{-3\sqrt{3}}{2}\right)}{2}$$

$$= 0$$

$$= y_B$$

$$y_E + x_C = \frac{4,5+1,5}{2} \quad \text{if } x_E + x_C = \frac$$

[EC] بالتالي B منتصف

D هو موسط المثلث EDC الصادر من [DB] الم

[AC] معیّن و K منتصف [OB] الذا ABCO لنا

بالتالي A و K و حلى استقامة واحدة

C و بما أنّ [AC] هو موسط المثلث EDC الصادر من

C فإنّ (AK) هو المستقيم الحامل لموسط المثلث الصادر من

G يقطع BD في -

$$DG = \frac{2}{3}DB$$
 بالتالي EDC بالتالي و مركز ثقل المثلث إذن

$$DB = \frac{\sqrt{3}}{2} \times DC = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$$
 فإن $EDC = \frac{6\sqrt{3}}{2}$ هو ارتفاع للمثلث المتقايس الأضلاع $EDC = \frac{1}{2}$

$$DG = \frac{2}{3} \times 3\sqrt{3} = 2\sqrt{3}$$
 نستنتج أنّ