

أسئلة متعددة الاختيارات - QCM

تمرین عدد 1

لكل حالة من الحالات التالية نقترح عدة إجابات محتملة ، ضع علامة (×) أمام المقترح السليم :

 $Big(-\sqrt{3};2ig)$ يكن $Aig(\sqrt{3};2ig)$ معينا متعامدا في المستوي و النقطتين Aig(O;I;Jig)

أ- A و B متناظرتان بالنسبة إلى :

O(OI) O(OI) O(OI)

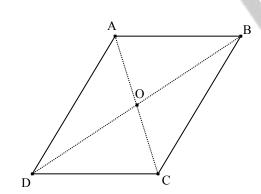
ب- لدينا:

 $(AB)\perp(OI)$ \square (AB)//(OI) \square (AB)//(OJ) \square

ج- مجموعة النقاط M(x;y) حيث $x \le \sqrt{3} \le x \le \sqrt{3}$ و

[BA) \Box [AB] \Box

 $_{m{c}}$: هي $_{m{c}}$ احداثيّات $_{m{c}}$ هي $_{m{c}}$


 $(0;1) \quad \square \qquad \qquad (0;2) \quad \square \qquad \qquad (0;4) \quad \square$

: هي P هي الحداثيّات P هي الحداثيّات P

 $x \ge -\sqrt{3}$ حيث (x,2) حيث (x,2) حيث (x,2) حيث (x,2) حيث (x,2)

تمرین عدد 2

O متوازي الأضلاع مركزه ABCD متوازي الأضلاع مركزه أجب بـ "صواب" أو "خطأ" :

C مسقط النقطة B على CD وفقا لمنحى B هو
O مسقط النقطة O على (AC) وفقا لمنحى
A مسقط النقطة D على BD وفقا لمنحى BC هو
(BD) وفقا لمنحى (CD) النقطتان B و B لهما نفس المسقط على

). اربط بخط:	معينا متعامدا في المستوي	(O;I;J)	ليكن
M'(-x;-y)	\odot) هي : (DI) بالنسبة إلى $M(x;y)$	مناظرة (
M'(-x;y)	\odot	() هي : 🔾	M(x;y) بالنسبة إلى	مناظرة (
M'(x;-y)	0	C	هي : ﴿	O بالنسبة إلى $M(x; y)$	مناظرة (
					4226	نمرين
	م المقترح السليم:	ضع علامة (×) أماد	جابات محتملة ، م	حالات التالية نقترح عدة إ	حالة من الـ	لكل
البعد <i>AB</i> يساوي :	و $x_{\scriptscriptstyle B}=2$ فإن $x_{\scriptscriptstyle A}=-$	نان من ∆ حیث 3-	و A و B نقط i	$ig(\mathrm{O};Iig)$ قيم مدر ج بالمعين	مست ∆ مست	•
	1 📗	5		-1 🗌		
$x_B = 4 \ \text{o} \ x_A = -3$	نقطتان من Δ حیث B	إذا كانت A و $$	حیث I = 2cm	$ig(\mathrm{O};Iig)$ قيم مدرج بالمعين	مست 🔬 مست	•
					فإن ّ:	
A	B = 7cm	AB = 14cm		AB = 1cm		
انن : Δ_2 وفقا لمنحى Δ_1	فتين لهما نفس المسقط على	و N نقطتین مختا N	M في المستوي و	و Δ_2 مستقیمین متقاطعین Δ_2	$\Delta_{_{ m l}}$ ليكن و	•
Δ_2 نطع	ية (MN)	$\Delta_2 //(MN)$		$\Delta_1 //(MN)$		
	: حى (DC) هي	لى $\left(AD ight)$ وفقا لمن	انن مسقط B ع	ABCD متوازي أضلاع	اذا كان	•
	D	A		$C \square$		
		$:$ فإنّ $\left(OJ ight)$ فإنّ	وفقا لمنحے $ig(OIig)$	هي مسقط B على A	، إذا كانت	•
(AB)	$\perp (OJ)$	(AB)//(OJ)		(AB)//(OI)		
الفاصلة ، فإنّ :	ن من المستوي لهما نفس	نقطتين مختلفتير B	A ي إذا كانت A و	معينا في المستور $(O;I;J)$	$^{\prime})$ ليكن $^{\prime}$	•
(AB)	//(<i>OJ</i>)	$(AB)\bot(OI)$		(AB)//(OI)		
	: فاِنّ $N\!\!\left(-\sqrt{\frac{4}{9}};\right)$	$\sqrt{5}$) $M\left(-\frac{2}{3};\right)$	$\sqrt{3}$ ي إذا كانت	معينا في المستو: $(O;I;J)$	ر ليكن (^۲	•
(MN))//(IJ)	(MN)//(OJ)		(MN)//(OI)		
	: فإنّ $F(19)$;-40) ي E(20;-	ي إذا كانت (40–	معينا في المستو: $(O;I;J)$	، ليكن (٢	•
(EF)	$\perp(OI)$	(EF)//(OJ)		(EF)//(OI)		

لكل حالة من الحالات التالية نقترح عدة إجابات محتملة ، ضع علامة (×) أمام المقترح السليم :

: لدينا . $B(2;4)$ و $A(2;7)$	ر حيث OI = OJ . نعتبر النقطتين	ليكن $\left(O;I;J ight)$ معينا متعامدا في المستوي	•
AB = 2+2	AB = 7+4	AB = 7-4	
	. $N\left(\sqrt{2};3\right)$ g $M\left(-\sqrt{2};3\right)$ g $M\left(-\sqrt{2};3\right)$	ليكن $\left(O;I;J ight)$ معينا متعامدا في المستوي	•
	:	النقطتان M و N متناظرتان بالنسبة إلى	
<i>o</i> []	$(OJ) \ \ \Box$	(OI)	
. $F(\sqrt{7};$	رو $\left(-\sqrt{2}-1 \right)$ و $\left(-\sqrt{7}; \left 1-\sqrt{2} \right \right)$	ليكن $\left(O;I;J ight)$ معينا متعامدا في المستوي	•
		النقطتان E و F متناظرتان بالنسبة إلى E	
0 🗆	(OJ)	(OI) [
لرتان بالنسبة إلى :	و $Nig(4;-6ig)$ متناظ $Mig(-4;8ig)$	ليكن $\left(O;I;J ight)$ معينا متعامدا في المستوي	•
<i>o</i> □	<i>I</i> 🗆	J 🗌	
: يساوي EF يساوي $\left(EF \right)$	(OI)/(OI) د قطتان حیث F	E يكن $\left(O;I;J ight)$ معينا في المستوي و	•
$ x_E - x_F $	$ y_E - y_F $	$ x_E + x_F $	
: هي $\left[AB ight]$ عن منتصف	K و $B(7,-9)$ و $A(-3)$	(O;I;J) معينا في المستوي و	•
$K\left(2;\frac{5}{2}\right)$	$K\left(5;\frac{-13}{2}\right)$	$K\left(2;-\frac{5}{2}\right)$	
: منتصف $\left[\mathit{EF} ight]$ هي	K و $E\left(0;rac{1}{2} ight)$ و $E\left(rac{1}{2} ight)$	اليكن $\left(O;I;J ight)$ معينا في المستوي و	•
I(0;0)	$I\left(\frac{1}{4};\frac{1}{4}\right)$	$I\left(\frac{1}{2};\frac{1}{2}\right)$	
: منتصف $igl(ABigr]$ هي K	و $B(-3;;-4)$ و $A(-3;$	(0;I;J) ليكن $O;I;J$ معينا في المستوي و	•
K(-3;0)	K(0;-2)	K(-3;2)	
: فإنّ $[AB]$ و K و	B(-100;-400) g $A(300;-20)$	(O;I;J) معينا في المستوي و	•
K(100;300)	K(100;-300)	K(-200;-100)	

ل حالة من الحالات التالية نقترح عدَة إجابات محتملة ، ضع علامة $(imes)$ أمام المقترح السليم :	<u> </u>
: ليكن $O;I;J)$ معينا في المستوي إذا كانت $Aig(50;30ig)$ و $Aig(50;30ig)$ فإنّ	
[AB] هو الموسط العمودي $OI)$ هو الموسط OI هو منتصف OI العمودي لـ OI هو منتصف OI العمودي لـ OI هو منتصف OI اذا كانت OI هي مسقط OI على OI وفقا لمنحى OI إذن :	
$(AB) \perp (OJ) \qquad (AB) / / (OJ) \qquad (AB) / / (OI) \qquad (AB) /$	
• إذا كان $ABCD$ متوازي الأضلاع مركزه O إذن إحداثيّات النقطة O في المعين $ABCD$ هي الزوج :	
$\left(0;\frac{1}{2}\right)$ \square $\left(\frac{1}{2};0\right)$ \square $\left(\frac{1}{2};\frac{1}{2}\right)$ \square	
: في معين متعامد $(O;I;J)$ لدينا $F(2;-\sqrt{3})$ و $G(2;\sqrt{5})$ و $G(2;\sqrt{5})$ اذن $G(2;J)$	
و K متناظرتان G و G متناظرتان بالنسبه G و G متناظرتان بالنسبه الى (OI) الى $(OJ)//(FG)$	
C(-1;-3) و $B(1;-3)$ و النقاط $A(-1;3)$ و النقاط $O(1;J)$ و $O(1;J)$	
النقاط المتناظرة بالنسبة إلى $\left(OI ight)$ هي :	
C و B \square C و A \square B و A \square : إذا كان $C(-1;-1)$ معيّنا في المستوي و النقاط $A(-1;2)$ و $A(-1;2)$ فإنّ $O(0;I;J)$ فإنّ	
$[AC]$ منتصف $[BC]$ منتصف A \square منتصف C	
: إذا كان $O;I;J$ معيّنا متعامدا في المستوي فإن مناظرة النقطة $A\Big(\sqrt{2};5\Big)$ بالنسبة إلى I هي النقطة $O;I;J$	
$A'(\sqrt{2};-5)$ \square $A'(-\sqrt{2};-5)$ \square $A'(2-\sqrt{2};-5)$ \square	
: معين في المستوي و $A(-4;-5)$ و $A(-4;-5)$ و المستوي و $O;I;J)$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
: و $B\left(-\sqrt{2};-\frac{3}{2}\right)$ و $A\left(\sqrt{2};-\frac{3}{2}\right)$ و $I\hat{O}J=60^\circ$ إذن $O;I;J$ معين في المستوي حيث $O;I;J$	
$(AB)//(OI)$ \square (OJ) و B متناظرتان بالنسبة إلى O \square O و A \square \square	
. $B(-3;2)$ معين في المستوي و $A(4;2)$ و $A(4;2)$. •	
: مجموعة النقاط $M(x,y)$ حيث $3{\le}x{\le}4$ و	
$[AB] \Box \qquad \qquad (AB) \Box \qquad \qquad (AB) \Box$	

لكل حالة من الحالات التالية نقترح عدة إجابات محتملة ، ضع علامة (×) أمام المقترح السليم:

: يكن $P\left(\frac{2}{3};4\right)$ معينا متعامدا من المستوي . مناظرة النقطة $P\left(\frac{2}{3};4\right)$ بالنسبة إلى O(I) هي .

 $S\left(4;\frac{2}{3}\right) \square$ $S\left(-\frac{2}{3};-4\right) \square$ $S\left(-\frac{2}{3};4\right) \square$ $S\left(\frac{2}{3};-4\right) \square$

: B(3;1) و B(3;1) و النقطتان و النقطتان معينا في المستوي و النقطتان A(1;-3) و النقطتان B(3;1)

I(2;1) \square I(2;-1) \square I(4;-2) \square

. ليكن $B(x_B;0)$ معينا في المستوي و $A(x_A;0)$ و $B(x_B;0)$ ، البعد AB يساوي . •

 $|x_A - x_B| \times OJ$ \square $|x_A - x_B| \times OI$ \square $(x_A - x_B) \times OI$ \square $(x_A - x_B) \times OJ$ \square

ويكن ABCD متوازي أضلاع مركزه النقطة I إحداثيّات النقطة I في المعين ABCD هي :

I(1;1) \square $I\left(\frac{1}{2};\frac{1}{2}\right)$ \square $I\left(0;\frac{1}{2}\right)$ \square

تمرین عدد8

ضع علامة (×) أمام المقترح السليم:

Mو N نقطتان من مستقیم مدرج بالمعین M فإن البعد و M نقطتان من مستقیم مدرج بالمعین $|x_M-x_N| imes OI|$ بساوي $|x_M-x_N| imes OI|$

و B و نقطتان من مستقيم مدرّج فاصلتاهما على التوالي $\sqrt{3}$ و $\sqrt{3}$

 $AB = 5 - \sqrt{3}$ صواب صواب

• إذا كان (C;A;B) معيّنا في المستوي فإنّ المستقيم (CB) يمثل محور الفواصل • أحطأ

 $x_{\scriptscriptstyle A}=0$ فإنّ $A\in \left(OI\right)$ معيّنا في المستوي إذا كان $A\in \left(OI\right)$ فإنّ في المستوي إذا كان $A\in \left(OI\right)$

 $Cigg(rac{\sqrt{2}}{2};1igg)$ و $Bigg(-\sqrt{2};3igg)$ ؛ $Aig(\sqrt{8};-1igg)$ عيّن في المستوي و النقاط D و النقاط D صواب

[AB] فإنّ C فإن

_ خطأ	_ صواب	هي ($A;E;D$) مستطيل مركزه E ، إحداثيّات النقطة B في المعيّن ($A;E;D$) هي ($1;-1$)
_ خطأ	صواب	و $Aig(530;\piig)$ الذا كان $Aig(O;I;Jig)$ معيّنا متعامدا في المستوي و النقطتين $Aig(O;I;Jig)$ و $Big(-528;\piig)$
_ خطأ	_ صواب	إذا كان $(O;I;J)$ معيّنا متعامدا في المستوي و النقطتين $A(3;0)$ و $B(-3;0)$ فإنّ JAB
ا خطأ	🗌 صواب	• إذا كان $(O;I;J)$ معيّنا في المستوي فإن كل نقاط المستقيم Δ الموازي لـ (OI) لها نفس الفاصلة
ا خطأ	_ صواب	M المناظرة $M(x;y)$ المعيّنا متعامدا و $M(x;y)$ المناظرة $M(x;y)$ المناظرة المناطرة $M(x;y)$
] خطأ	صواب	ليكن $(O;I;J)$ معينا في المستوي $A(3;2)$ و $B(2;1)$ متناظرتان بالنسبة إلى $C(1;2)$
] خطأ	صواب	• ليكن $(O;I;J)$ معينا في المستوي . $D(-12;-2)$ و $C(-12;5)$ ؛ $A(2;-3)$ و $ABCD$ و $ABCD$ هو متوازي الأضلاع • ليكن $ABCD$ معينا في المستوي .
ا خطأ	_ صواب	نعتبر النقاط $Q(6;3)$ معيد $M(1;2)$ و $Q(6;3)$ و $Q(6;3)$ و $M(1;2)$ الرباعي M هو متوازي الأضلاع
_ خطأ	صواب	و $Big(2\sqrt{2};2ig)$ معينا في المستوي . النقاط $Aig(\sqrt{8};1ig)$ و $Aig(\sqrt{32};3ig)$ على استقامة واحدة $Cig(\frac{\sqrt{32}}{2};3ig)$

:	مة (×) أمام المقترح السليم	تملة ، ضع علا	نقترح عدة إجابات مح	حالة من الحالات التالية	1) لكل.
بالنسبة إلى :	و $B\!\left(0;\!-\!\sqrt{7} ight)$ متناظرتان	$A\!\left(0;\sqrt{7}\right)$ ن	د في المستوي ، النقطتا	معیّن متعام $ig(O;I;Jig)$	•
(OJ)	(OI) [<i>o</i> □	
إلى :	متناظرتان بالنسبة $B\left(-\sqrt{3}\right)$	$B(0)$ $\mathcal{L}\left(\sqrt{3}\right)$	مستوي، النقطتان $(0;$	معيّن في الد $\left(O;I;J ight)$	•
(OJ)	(OI)		<i>o</i> 🗌	
. متناظرتان بالنسبة إلى $Big(\sqrt{x})$	(3-1) $(-1+4)$	$\sqrt{3}$ ن $\left(\sqrt{3}\right)$ ن) في المستوي النقطتا	D;I;Jig) معين متعامد	• ف
	o 🗆	(OJ)		(OI)	
: لدينا $D\left(rac{33}{2} ight)$ و	$C\left(\frac{19}{2}\right)$: $B\left(-17\right)$: A	النقاط (9)	بمعین $(O;I)$ نعتبر	لیکن ۸ مستقیما مدرجا	•
AB <	CD	AB = CD		AB > CD	
		يب هو المستقيم	المستوي . محور الترات	ن (I,J,O) معیّنا في	• ليكر
(IJ)		(OJ)			OI)
: هي $ig(OIig)$ نحی	على $\left(OJ ight)$ وفق الم $M\Big($	$\sqrt{5};-2$ طة	، المستوي . مسقط النقع	ن $\left(O,I,J ight)$ معيّنا في	• ليكر
$M'(\sqrt{5};0)$	$M'(-2;\sqrt{5})$		$M'(-\sqrt{5};1)$	M'(0;	-2)
$\left(OI ight)$ ان بالنسبة إلى	و B متناظرت A	III			
$\left(OJ ight)$ ن بالنسبة إلى ن	و B متناظرتار A		المستوي.	ن $\left(O,I,J ight)$ معيّنا في	• ليكر
$\left(OJ ight)$ وازي المستقيم	المستقيم (AB) ي	. لدينا :	$B\left(-\sqrt{7};-\sqrt{3}\right)$ و	$A\left(\sqrt{7},-\sqrt{3}\right)$ نقطتین	نعتبر ال
$\left(OI ight)$ وازي المستقيم	المستقيم (AB) يا				
	: لاينا $B(-5;-\sqrt{3}$	$A(5;-\sqrt{3})$	لمستوي و النقطتين (معیّنا في ا $\left(O;I;J ight)$	• ليكن
يوازي المستقيم	(AB) المستقيم		بالنسبة إلى:	و B متناظرتان A	
(OI)	$(OJ) {\textstyle \square}$		$(OJ) {\textstyle \square}$	(OI)]
النقطة 0.	B مناظرة A بالنسبة إلى	•	•	ن (O,I,J) معيّنا متع C اثنيات النقطة C مناظرة	
(1;-2)	(1;2)		(-1;-2)	(1;2)

. (OJ) بية إلى	لتكن B مناظرة A بالنس $Aig(-$	$\sqrt{2};-1$ يّنا متعامدا في المستوي و $\sqrt{2};-1$	
$\left(-\sqrt{2};1\right)$	$\left(\sqrt{2};-1\right)$	رة النقطة B بالنسبة إلى O هي : $\left(\sqrt{2};1\right)$	
	\colon ي في معيّن $\left(O,I,J ight)$ فإن	و $B(-1;-3)$ نقطتين من المستو	A(-1;2) إذا كانت
(OJ)//(AB)	$(OI) \perp (AB) \square$	[AB] منتصف O	(OI)//(AB)
	بالنسبة إلى :	و $Big(\sqrt{2};\sqrt{2}ig)$ متناظرتان ب $Aig(\sqrt{2};\sqrt{2}ig)$	$(2;-\sqrt{2})$ النقطتان •
ig(OJig) المستقيم	ig(OIig) المستقيم $igcap$		○ النقطة
			ىرىن عدد10
			رین عدد۱۱
	و c و d متقابلان d	اعداد حقیقیة حیث a و b متقبلان a	ليكن c ; b ; a و d
		متعامدا في المستوي	لیکن $\left(O;I;J ight)$ معیّنا
		ب الله	أجب بـ "صواب" أو "
		$A \in (OJ)$ فإن $A(c-d)$	(a+b) إذا كانت
	(M	N)//(OI) فان $N(6;-d)$ و M	I(5;c) إذا كانت •
	$\left(OJ ight)$ متناظرتان بالنسبة إلى	F و $E(-b;-c)$ و و $E(-b;-c)$ و $E(-b;-c)$	-a;d) إذا كانت $ullet$
	O تناظرتان بالنسبة إلى	و $H(b; -b)$ فإنّ G و G	(-a;a) اِذَا کانت
	ig(0;cig) هي $ig[RSig]$	و $Sig(b;-dig)$ فإنّ إحداثيات K م	(a;c) اِذَا كَانْت
	نّ المثلث IQT متقايس الضلعين	و $Q(-b-c;\mathrm{a-}c)$ فان $T(a+d)$	• إذا كانت (b-d;