

أسئلة متعددة الاختيارات - QCM

تمرین عدد 1

لكل حالة من الحالات التالية نقترح عدة إجابات محتملة ، ضع علامة (×) أمام المقترح السليم:

يساوي :	$\left 2-\sqrt{3}\right $	•
---------	---------------------------	---

$$2+\sqrt{3}$$

$$-2+\sqrt{3}$$

$$2-\sqrt{3}$$

$$2\sqrt{7} + 3\sqrt{3}$$

$$2\sqrt{7}-3\sqrt{3}$$

$$3\sqrt{3}-2\sqrt{7}$$

•
$$\sqrt{2012} - \sqrt{2013}$$
 $\sqrt{2013}$

$$\sqrt{2013} - \sqrt{2012}$$

$$\left|\sqrt{2013}-\sqrt{2012}\right|$$

$$\sqrt{2012} - \sqrt{2013}$$

• لدينا :

$$\sqrt{6} + \sqrt{7} < \sqrt{13}$$

$$\sqrt{6} + \sqrt{7} = \sqrt{13}$$

$$\sqrt{6} + \sqrt{7} > \sqrt{13}$$

• لدينا:

$$1 - \sqrt{2} < 1 - \sqrt{3} \quad \square$$

$$\frac{1}{1-\sqrt{3}} > \frac{1}{1-\sqrt{2}}$$

$$\frac{1}{1-\sqrt{2}} > \frac{1}{1-\sqrt{3}} \square$$

: لاينا
$$a = \frac{\sqrt{2} + 3}{1 + 2\sqrt{2}}$$
 لاينا •

$$a=1$$

: فإن $a-b=2-\sqrt{5}$ فإن عددين حقيقيّين حيث $a-b=2-\sqrt{5}$ فإن •

$$a < b \square$$

موجب
$$a$$

: فإنّ $a-b<-\sqrt{2}-1$ فإنّ عددين حقيقيّين حيث $a-b<-\sqrt{2}$

و
$$b$$
 سالبان a

: فإن $a-b<-\sqrt{5}$ فإن عددين حقيقيّين حيث $a-b<-\sqrt{5}$

$$(a-b)^2 > 5$$

$$(a-b)^2 < 5$$

و
$$b$$
 سالبان a

. إذا كان a < b عددين حقيقيّين مخالفين للصفر حيث a < b فإنّ a < b

$$-12a > -12b$$

$$\frac{1}{a} > \frac{1}{b}$$

$$-a < -b \square$$

و الأعان $a \ge b$ فإنّ عددين حقيقيّين مخالفين للصفر حيث $a \ge b$ فإنّ •

$$a-b \ge 0$$
 \Box $-\sqrt{5}a \le -\sqrt{5}a \le -\sqrt{5}$

$$-\sqrt{5}a \le -\sqrt{5}b \quad \square \qquad \qquad \frac{1}{a} \le \frac{1}{b} \quad \square$$

: فإنّ $a-b=3^{15}-\frac{1}{3^{-15}}$ فإنّ عددين حقيقيّين حيث عددين عدين عددين عنه فإن

$$a=b$$

: ادینا a > b و $ab = -\sqrt{6}$ دینا عددان حقیقیّان حیث a > b

$$\frac{1}{a} = \frac{1}{b}$$

$$\frac{1}{a} > \frac{1}{b}$$

$$\frac{1}{a} < \frac{1}{h} \square$$

: فإن عددان حقيقيّان حيث $a^2 \le b^2$ فإن a

$$|a| \le |b|$$

$$a \ge b$$

$$a \le b$$

و $y \ge 2$ و عددان حقیقیّان . إذا کان $x \ge 3$ و کان :

$$x+y \ge 5$$

$$2-y \ge x-3$$

$$x-y \ge 1$$

و b < 3 و a > 2 فإنّ الإذا كان a > 3 فإنّ عددان حقيقيّان . إذا كان a > 3

$$\frac{b}{a} < \frac{3}{2}$$

$$a-2>b-3$$

$$a-2 < b-3$$

: إذا كان $a \leq b$ و $c \leq d$

$$a-b \le d-c$$

$$a-c \le b-d$$

$$a-d \le b-c$$

: فإنّ $a - \sqrt{2} = b + \sqrt{3} = c - \sqrt{5}$ فإنّ •

$$a < c < b \square$$

: فإنّ عدد حقيقي حيث $a \le 1$ فإنّ •

$$a \ge a^2$$

$$a \le \sqrt{a}$$

$$a \le a^2$$

غان $B = 3\sqrt{5} - 7$ و $A = 2\sqrt{5} - 8$ غان :

: فإنّ عددان حقيقيّان سالبان قطعا . إذا كان $a \leq b$ فإنّ $a \leq b$

$$-a-1 \ge -(b+3)$$

$$-a-1 \ge -(b+3)$$
 $a^2 + \sqrt{2} \ge b^2 + 1$

$$\frac{1}{a} \ge \frac{1}{b}$$

تمرین عدد 2

	·	·
x > 0	$x > y \square$	$x < y \square$

: لينا .
$$b=3\sqrt{7}-4\sqrt{5}+\left(2\sqrt{10}-3\sqrt{5}\right)$$
 و $a=3\sqrt{7}-4\sqrt{5}$ لينا .

$$a < 0 \square$$
 $a > b \square$ $a < b \square$

و a>b و عددان حقيقيّان بحيث a>b و a>b و غان ّ:

: فإنّ $x-y=\left|3\sqrt{7}-2\sqrt{17}\right|$ فإنّ عددان حقيقيّان إذا كان $x-y=\left|3\sqrt{7}-2\sqrt{17}\right|$

$$a^2 > b^2$$
 $a^{-1} < b^{-1}$ $a^{-1} > b^{-1}$

و $X_B=-4\sqrt{3}$ و $X_A=-5\sqrt{2}$ و من مستقيم مدرّج بالمعين (O;I) حيث $X_A=-4\sqrt{3}$ و $X_A=-5\sqrt{2}$ و $X_A=-4\sqrt{3}$ و $X_C=-2\sqrt{15}$

$$C \in [AB] \square \qquad \qquad B \in [AC] \square \qquad \qquad A \in [BC] \square$$

 $1,733 \times 10^{-2}$ $\boxed{}$ 5×10^{-2} $\boxed{}$ $2,03 \times 10^{-2}$ $\boxed{}$

2) لكل حالة من الحالات التالية نقترح عدة إجابات محتملة إحداها فقط صحيحة ، ضع علامة (×) أمام المقترح السليم :

: فإن a < b و b و b و عدادًا حقيقية حيث a و b مخالفان للصفر . إذا كان a < b

$$a^2 < b^2$$
 \square $\frac{1}{a} > \frac{1}{b}$ \square $a+c < b+c$ \square $a.c < b.c$ \square

: فإن a>b فإن عددين حقيقيين حيث a>b فإن •

$$a+2 < b+7$$
 \square $-3a < -3b$ \square $a-3 < b-3$ \square $a-3 > b-5$ \square

تمرین عدد 3

ضع علامة (×) أمام المقترح السليم:

- و b عددان حقیقیّان ؛ $b \geq a$ إذن $b \geq a$ و b = a و a
- و a عددان حقیقیّان حیث $a \le b$ اِذن $a \le b$ اِذن $a \le b$ عددان حقیقیّان حیث $a \le b$ اِذن $a \le b$ عددان حقیقیّان حیث $a \le b$ اِذن $a \le b$ عددان حقیقیّان حیث $a \le b$ اِذن $a \le b$ عددان حقیقیّان حیث $a \le b$ عددان حیث $a \ge b$ عد
- و a عددان حقیقیّان حیث a < b إذن a < b + 1 < -3a + 2 صواب a < b
- $-\frac{1}{9} < -\frac{100}{899} \quad \bullet$
- $\sqrt{5}+\pi<\sqrt{6}+4$ فطأ
- صواب $\boxed{}$ حطأ $\boxed{}$ صواب $\boxed{}$
- صواب $\sqrt{5}+11 \ge 7-\sqrt{7}$ طأ
- $-\frac{2\sqrt{2}}{3} \ge -\frac{20\sqrt{2}}{3}$ صواب
- ا مواب $\frac{1}{2\sqrt{3}} < \frac{1}{3\sqrt{2}}$ فطأ
- $\frac{1}{\sqrt{3}+1} > \frac{1}{\sqrt{3}-1}$ طأ
- $\frac{3}{4}\sqrt{2} < \frac{4}{3\sqrt{2}}$ صواب \Box
- $\frac{1}{\sqrt{2}-1}$ حطأ $\frac{1}{\sqrt{3}-\sqrt{2}}$ عطأ $\frac{1}{\sqrt{3}-\sqrt{2}}$
- هما یکن a و b عددین حقیقیّین موجبین فإنّ $a+b \le 2\sqrt{ab}$ صواب $a+b \le 2\sqrt{ab}$
 - $b=3\sqrt{13}-4\sqrt{11}$ و $a=5\sqrt{7}-4\sqrt{12}$ نعتبر العددين

لدينا $b^2 + a^2 - 2ab \ge 0$ لدينا